1. $a^{m} a^{n}=a^{m+n} \quad\left(\right.$ Why? $\left.a^{3} a^{2}=(a a a)(a a)=a a a a a=a^{3+2}\right)$
2. $\left(a^{m}\right)^{n}=a^{m n}$
$\left(\right.$ Why? $\left(a^{3}\right)^{2}=(a a a)(a a a)=$ aaaaaa $\left.=a^{3 \cdot 2}\right)$
3. $(a b)^{m}=a^{m} b^{m}$
$\left(\right.$ Why? $\left.(a b)^{3}=(a b)(a b)(a b)=a b a b a b=a a a b b b=(a a a)(b b b)=a^{3} b^{3}\right)$
4. $a^{0}=1$
(Why? $a^{0}=\frac{a^{1}}{a^{1}} a^{0}=\frac{a^{1} a^{0}}{a^{1}}=\frac{a^{1+0}}{a^{1}}=\frac{a^{1}}{a^{1}}=1$)
5. $a^{-m}=\frac{1}{a^{m}}$
(Why? $a^{-m}=\frac{a^{m}}{a^{m}} a^{-m}=\frac{a^{m} a^{-m}}{a^{m}}=\frac{a^{m+(-m)}}{a^{m}}=\frac{a^{0}}{a^{m}}=\frac{1}{a^{m}}$)
6. $\frac{a^{m}}{a^{n}}=a^{m-n}$
(Why? $\frac{a^{m}}{a^{n}}=a^{m} \frac{1}{a^{n}}=a^{m} a^{-n}=a^{m-n}$)
7. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
(Why? $\left.\left(\frac{a}{b}\right)^{m}=\left(a \cdot \frac{1}{b}\right)^{m}=\left(a b^{-1}\right)^{m}=a^{m}\left(b^{-1}\right)^{m}=a^{m} b^{-1 \cdot m}=a^{m} b^{-m}=\frac{a^{m}}{b^{m}}\right)$
8. $\sqrt{a}=a^{\frac{1}{2}}$
(Why? $\left.(\sqrt{a})^{2}=a=a^{1}=a^{\frac{1}{2} \cdot 2}=\left(a^{\frac{1}{2}}\right)^{2}\right)$
9. $\sqrt[n]{a}=a^{\frac{1}{n}} \quad$ (Why? similar: $\left.(\sqrt[n]{a})^{n}=a=a^{1}=a^{\frac{1}{n} \cdot n}=\left(a^{\frac{1}{n}}\right)^{n}\right)$
10. $\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}=a^{\frac{m}{n}} \quad\left(\right.$ Why? $\left.\sqrt[n]{a^{m}}=\left(a^{m}\right)^{\frac{1}{n}}=a^{m \cdot \frac{1}{n}}=a^{\frac{m}{n}}=a^{\frac{1}{n} \cdot m}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m}\right)$
11. $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$
(Why? $\left.\sqrt[n]{a b}=(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} b^{\frac{1}{n}}=\sqrt[n]{a} \sqrt[n]{b}\right)$
12. $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad\left(\right.$ Why? $\left.\sqrt[n]{\frac{a}{b}}=\left(\frac{a}{b}\right)^{\frac{1}{n}}=\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)$

Not exponent properties, but useful:

1. $\frac{a b}{a c}=\frac{b}{c}$ (simplifying fractions)
2. $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$ (adding fractions with like denominators)
3. $\frac{a}{c}+\frac{b}{d}=\frac{a d+b c}{c d} \quad$ (Why? $\frac{a}{c}+\frac{b}{d}=\frac{a}{c} \cdot \frac{d}{d}+\frac{b}{d} \cdot \frac{c}{c}=\frac{a d}{c d}+\frac{b c}{c d}=\frac{a d+b c}{c d}$)
4. $\frac{a}{c} \cdot \frac{b}{d}=\frac{a b}{c d}$ (multiplying fractions)
5. $\frac{1}{\frac{a}{b}}=\frac{b}{a}$ (reciprocals) (Why? $\frac{1}{\frac{a}{b}}=\frac{\frac{b}{a}}{\frac{b}{a}} \cdot \frac{1}{\frac{a}{b}}=\frac{\frac{b}{a}}{\frac{b}{a} \cdot \frac{a}{b}}=\frac{\frac{b}{a}}{\frac{b a b}{a b}}=\frac{\frac{b}{a}}{1}=\frac{b}{a}$)

The following inequalities represent things that students sometimes erroneously think should be equal, but are usually not equal. I am intentionally misusing the \neq sign here to mean "is usually not equal to," when it actually means "is not equal to."

1. $\frac{a+b}{a+c} \neq \frac{b}{c} \quad\left(\right.$ e.g. $\left.\frac{1+2}{1+3}=\frac{3}{4} \neq \frac{2}{3}\right)$
2. $(a+b)^{m} \neq a^{m}+b^{m}$
(e.g. $\left.(1+3)^{2}=4^{2}=16 \neq 10=1^{2}+3^{2}\right)$
3. $a^{-m} \neq-a^{m}$
(e.g. $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \neq-8=-\left(2^{3}\right)=-2^{3}$)
