Not exponent properties, but useful:

- 1. $\frac{ab}{ac} = \frac{b}{c}$ (simplifying fractions)
- 2. $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ (adding fractions with like denominators)
- 3. $\frac{a}{c} + \frac{b}{d} = \frac{ad+bc}{cd}$ (Why? $\frac{a}{c} + \frac{b}{d} = \frac{a}{c} \cdot \frac{d}{d} + \frac{b}{d} \cdot \frac{c}{c} = \frac{ad}{cd} + \frac{bc}{cd} = \frac{ad+bc}{cd}$)
- 4. $\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$ (multiplying fractions)
- 5. $\frac{1}{\frac{a}{b}} = \frac{b}{a}$ (reciprocals) (Why? $\frac{1}{\frac{a}{b}} = \frac{\frac{b}{a}}{\frac{b}{b}} \cdot \frac{1}{\frac{a}{b}} = \frac{\frac{b}{a}}{\frac{b}{a} \cdot \frac{a}{b}} = \frac{\frac{b}{a}}{\frac{b}{a}} = \frac{\frac{b}{a}}{\frac{1}{a}} = \frac{b}{a}$)

The following inequalities represent things that students sometimes erroneously think should be equal, but are usually not equal. I am intentionally misusing the \neq sign here to mean "is *usually* not equal to," when it actually means "is not equal to."

1. $\frac{a+b}{a+c} \neq \frac{b}{c}$ (e.g. $\frac{1+2}{1+3} = \frac{3}{4} \neq \frac{2}{3}$) 2. $(a+b)^m \neq a^m + b^m$ (e.g. $(1+3)^2 = 4^2 = 16 \neq 10 = 1^2 + 3^2$) 3. $a^{-m} \neq -a^m$ (e.g. $2^{-3} = \frac{1}{2^3} = \frac{1}{8} \neq -8 = -(2^3) = -2^3$)