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Reconstructivism in Middle School

Mathematical abstraction in a nutshell

The process of doing mathematics involves two fundamentally different processes. The first is 
the process of generalizing from the concrete to the abstract.The second is the process of 
deducing facts about those abstractions. The power of mathematics is that these deductions must 
be no less valid that the abstractions from which they are deduced. For example, once we have 
the abstractions of similar triangles and basic algebra, we can deduce the Pythagorean Theorem, 
which in turn gives us lots of useful information about real-world triangles. 

Viewed another way, we start with the real world and develop abstractions of some of it. Then 
the deductions we make about those abstractions allows us to learn more about our world.

Mathematicians strive to deduce as much as they can from the fewest and least uncontroversial 
postulates as they can, because they know that the deductions are hypothetical with respect to 
those postulates. There is also an aesthetic, in which, in the name of elegance, mathematicians 
tend to ignore in print the thought processes that led to the wise postulates and to the clever 
deductions, presenting the work as an austere, minimalist collection of postulates, definitions and 
proofs. One of the extreme examples of this aesthetic was the Bourbaki group, which endeavored 
to derive as much of modern mathematics (or "mathematic," as they chose to call it, to 
emphasize its unity) from axiomatic set theory (Borel 1998). Thus the typical presentation of 
mathematics does little to help the reader to experience the thought processes that the presenter 
went through on the way to learning the mathematics presented. As we will see, this aesthetic 
can cause problems with mathematics education.

Over millennia, wise choices of useful abstractions, clever deductions about those abstractions, 
and useful techniques based on those deductions together constitute the canon of mathematical 
knowledge.I hope it is an uncontroversial statement to suggest that the goals of mathematics 
education should be to help students to learn this canon in such a way that they can understand it, 
use it, and potentially contribute to it.

A very short history of abstraction in 20th century mathematics education

In the early 20th century, abstraction faded from mathematics education as it became dominated 
by progressivist educators like William Kilpatrick. "Limiting education primarily to utilitarian 
skills sharply limited academic content, and this helped to justify the slow pace of student 
centered, discovery learning, the centerpiece of progressivism" (Klein 2003 p. 178). 

With the "New Math" of the 1950s and 1960s, the pendulum swung toward abstraction. The 
movement was led largely by mathematicians, many of whom in turn were influenced by the 
pure axiomatic approach exemplified by the Bourbaki. While some aspects of New Math survive 
today (e.g. calculus in high school (Klein p. 184)) it was largely considered a failure. There are 
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many reasons for this. One reason might be that, even though an experienced mathematician can 
usually construct intuitive examples of, and mental models for, abstract concepts, this is a skill 
that takes years to develop, while the New Math often took that skill for granted. "[The logical 
system, in the way it is usually taught,] gives only the end-product of the mathematical discovery 
and fails to bring about in the learner those processes by which mathematical discoveries are 
made" (Skemp 1971, p. 13, in Hershkowitz 1990). Another reason for New Math's fall from 
grace might be that teachers were not themselves expert enough in abstract mathematics to teach 
it well. 

The demise of New Math made the pendulum swung again. Educators took the upper hand and 
progressivism returned as an apparently new idea (Klein p. 185). Student-centered progressivism 
morphed into student-centered constructivism, in which only student-constructed knowledge is 
"truly integrated and understood." The NCTM came out with its heavily constructivist 1989 
NCTM Curriculum and Evaluation Standards for School Mathematics just as the Bush 
administration was promoting "standards-based education," and the NSF funded numerous 
curricula aligned with the constructivist NCTM standards (Klein p 195). Not only did many of 
these curricula not teach much abstraction, they encouraged students to invent their own 
techniques, relatively uncritically. Sadly, as modern educational constructivists will proudly 
proclaim, because students invent them, they will probably remember them, whether they are 
correct or not. 

Many mathematicians and parents were concerned that children were not learning the canon nor 
even basic techniques. This led to the "math wars" started by groups such as "Mathematically 
Correct," (2008) although the "war" was not just about math, but also about the abuse of 
constructivist theory to limit content. In 1996, E.D. Hirsch, Jr. wrote The Schools We Need and 
Why We Don't Have Them which criticized this form of teaching as "sometimes inescure in its 
results--insecure...in the content of what is remembered. Students 'discover' all sorts of things, 
some of the irrelevant...and some of them wrong." (Hirsch 1996 p. 134). On the next page he 
adds, "The term 'constructivism' has become a kind of magical incantation used to defend 
discovery learning, which is no more sanctioned by psychological theory than any other form of 
constructed learning" (p. 135). The wars are not over. 

War or dilemma?

Throughout this conflict, it looks like we have the mathematicians and their sympathizers on the 
side of theory and technique, and educators on the side of student-centered, hyper-constructivist 
learning, as if only one side were right. Kay Merseth often speaks of educational dilemmas, both 
horns of which represent valid positions, and therefore which must be "more commonly 
managed than resolved" (Merseth 1997). I suggest that this war would be more profitably 
managed as a dilemma than fought. Few doubt the value of the mathematical canon, nor does 
anybody who understands the basics of modern educational theory doubt that students must 
construct, somehow, their own knowledge. Sitting on either horn of this dilemma, as it seems 
most of the math warriors have done, is preposterous. Pouring the canon down students' throats 
cannot work, nor can dropping students in a mathematical playground and hoping for the best. 
We have to manage this dilemma.

Here is a musical analogy. Jazz music is one of the most personal, creative art forms there is. 
Most performances are improvised on the spot, as if from whole cloth. But the only reason these 
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performances sound good and sound like jazz is that the musicians have absorbed the canon. 
Good jazz musicians spend a lot of time studying the theory and copying, over and over, the 
masters' improvisations. Only in this way can they expect to inherit enough of the tradition so 
that they can improvise freely, but still informed by tradition. The rules in mathematics are much 
stricter, so the same methods of practice must apply even more stringently: only by learning the 
theory developed by the masters, and by practicing mathematics as practiced by the masters, can 
one hope to benefit from their rich intellectual history.

On the other hand, no jazz musician wants to sound like a copy of any particular master. When 
studying theory, a good jazz musician tries not to simply commit the rules to memory, but rather 
to understand them deeply so as to better be able to use them and in some cases even to invent 
their own contributions. When practicing the masters' improvisations, they "drill" but do not 
"kill." Instead, they strive to play as if they were improvising. In this way, they gradually inherit 
some of the masters' thought processes and hence some of their improvisational abilities. 
Similarly, no math student wants to copy mindlessly a proof or repeatedly practice a technique as 
an end to itself, and every student should spend some time trying to invent some math. But when 
there is content to be taught, if the student cannot invent it, the student instead +reads a math 
book, or listens to a teacher, actively, with a pencil (Dyer-Bennet 1972) and attempts to 
reconstruct the contents mentally, rather than passively attempting to absorb the material. Ideally, 
if a student practices a technique, the goal is to integrate the technique into his  repertoire as if he 
had invented it, not simply to be able to repeat it unconsciously. The closer we come to this goal, 
the more the student is able to "stand on the shoulders of giants," whether to see farther as 
Newton did, or simply to gain something from the giants' vantage point as most of us do. 

There are no "jazz wars" analogous to the math wars. Every jazz musician realizes the value of 
copying the masters and mastering the theoretical canon on the one hand, and also the value of 
improvisation on the other. They manage the dilemma. Every moment spent copying a master is 
a moment spent not improvising, and every moment spent improvising is a moment spent not 
learning the canon. So the jazz musician  does some of each and doesn't get all bent out of shape 
about it, because he knows that it is all necessary. Imagine math education with no math wars, in 
which mindful practice and mindful study of the canon were valued, but in which student 
invention, discovery and play were also valued. In this case there would be no war, only 
management of the dilemma when faced, at any one time, with choosing between valued options. 

Reconstructivism 

What of the objection that constructivism tells us that, for real learning to occur, students must 
construct their own knowledge? E.D Hirsch Jr. claims that constructivist educators did not fully 
understand the constructivism of psychologists and epistemologists: "It is not the case, as 
constructivists imply, that only such self-discovered knowledge will be reliably understood and 
remembered. This incorrect claim plays on an ambiguity between the technical and nontechnical 
uses of the term 'construct'" (Klein 2003 p. 192). A philosophical constructivist claims that our 
minds always construct our own knowledge, even if it is spoon-fed to us, so philosophical 
constructivism is a pretty useless concept for educators. Psychological constructivism seems to 
imply that our minds must have the experience of invention to learn, but that does not rule out 
some heavy scaffolding to ensure that students "invent" what we want them to. Groen and Kieran 
(1983) interpret Piaget: "Real comprehension...implies its reinvention by the pupil" (italics 
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mine). Much as a false choice between beans and peas is much more likely to appeal to a small 
child than a demand to eat his vegetables, similarly leading a child to the point where an 
important concept is within sight (scaffolding) might provide enough of the sense of discovery 
that the concept holds, yet still ensure that the child learns the desired content. This is very 
different from the "eat whatever you want, because learning how to eat is more important than 
what you eat" approach of some modern educators.

This is just another example of the dilemma. At any point in a student's education at which he 
has not grasped some technique or concept, the teacher must choose between adding more 
scaffolding, which hopefully leads the student to the desired technique or concept at the expense 
of lessening (but not eliminating!) the sense of invention, or letting the student continue to invent 
at the expense of content. This choice is not easy, but I believe it is a mistake to go too far down 
the path of the student's own invention at the expense of correctness. Mathematics is built upon 
logic, and even a single contradiction can lead to any proposition at all. So one erroneous 
contradiction can, at least in principle, bring down the whole edifice. And besides, there is a 
canon to learn.

I will take the liberty of calling this way of thinking "reconstructivism" to emphasize both that it 
is consistent with constructivism, at least in the philosophical and psychological uses of the term, 
if not the constructivist educators' use, and also to emphasize that it is really often a good idea to 
give a student enough scaffolding to be correct, even at the expense of some of the experience of 
invention.

Middle school 

I bring up the concept of reconstructivism because I believe that it is particularly important at the 
middle school level to ensure that students learn mathematics correctly. Dahl (2004, p. 5) 
suggests that the unstable period of adolescence that is usually associated with vulnerabilities is 
also a unique period of opportunities. For an example, Dahl reminds us of the fact that it is much 
more difficult to learn fluency in a new language after puberty than during or before. In many 
ways, abstract mathematics is a language, and it might be that adolescence is the last opportunity 
for most of us to learn it fluently. So middle school may be the best time of life at which to learn 
abstract mathematical thinking. Yet Doda (2000 p. 45) laments that, in middle school at least, 
"misguided interpretations of of progressive instructional methods have yielded sloppy attention 
to intellectual development and authentic and substantive student learning."

Fortunately, middle school begins at roughly the time at which Piaget tells us the "propositional" 
or "formal operations" psychological stage begins (age 11-12) , and middle school ends roughly 
when this stage reaches equilibrium (age 14-15). This stage allows reasoning by hypothesis 
(Gruber & Vonèchein 1977 p. 461), the reasoning  which is fundamental to abstract mathematical 
reasoning. So Piaget would suggest that it is possible to introduce abstract reasoning at this age. 
Reggiani (1994 p. 104) claims that even untrained students are capable of abstracting from the 
particular: "11-12 year old pupils not educated to think algebraically, nor trained to use formal 
properties, are able to 'sense the general" starting from particular cases." Rosskopf (1971 p. 128) 
adds, "By the time a child has finished the sixth grade he must have become familiar, at least in 
an intuitive way, with the properties of the number system: closure, commutativity, associativity, 
the identities for addition and multiplication, and the distributive property. Whether he can give 
the properties names or state them in terms of letters is not nearly so important as to have 
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realized the properties--to have had experiences in which they appeared. Most eleven year olds 
are at the concrete operational stage of cognitive development. Some will be at the threshold of 
the formal stage. How they progress depends upon their own maturation patterns and the sort of  
experiences they have in and out of school" (italics added). Rosskopf also tells us that many low 
achievers never make it into the formal stage, leaving aside the question of whether, with the 
right teaching, these low achievers might otherwise reach it (p. 126). Indeed, Fischbein (1990) 
tells us that "every important progression in the child's reasoning capacity...may be achieved only 
as an effect of practice. The adolescent would never acquire spontaneously the formal 
perspective imposed by mathematics...the student learns mathematics...by constructing them 
through his or her own intellectual efforts. But individuals usually do not do all these things by 
responding to their own problems and by resorting to their own, natural, intellectual means...The 
task of the teacher is to create an environment that would require a mathematical attitude, 
mathematical concepts, and mathematical solutions." In other words, we must heavily scaffold 
the student's construction of formal mathematics.

Even Glenda Lappan, co-author of the heavily constructivist Connected Math program says that 
middle school children "become capable of generalization, abstraction and argument in 
mathematics" (Lappan, p. 23). Unfortunately, while this leads her correctly to "expand their 
experiences with 'doing' mathematics" this does not lead her to recognize the value of "doing" it 
like the masters did.

It is clear that reconstructivist abstract mathematics will have to be taught differently from the 
New Math abstraction. Students will have to be guided in both directions, first in generalizing 
from the particular, and then in deducing from the general. An elegant proof may be a thing of 
beauty for someone schooled in that aesthetic, but that sort of appreciation takes practice. 
Balachef (1987 in Hershkowitz 1990 p.90) did research on a process by which 12-year-olds 
constructed a proof that the sum of the angles in a triangle is 180° by first doing experiments 
with triangles, then conjecturing the theorem, and finally proving the theorem "with the help of 
the teacher." A New Math approach, on the contrary, might start with the Euclidean axioms, 
progress to theorems about opposite interior angles and on to the proof, which would surely 
leave the students scratching their heads. In fact I tried an abbreviated version of this latter 
method with disastrous results. Another point to be made from this example is that good teaching 
involves lots of modeling, especially when on unfamiliar territory. Compare this with the modern 
educational constructivists, who would encourage middle school students to continue with their 
childish, fuzzy ways of thinking. Of course practicing this kind of fuzzy thinking reinforces it. It 
is interesting to me that "teacher talk" or "sage on the stage" teaching is commonly ridiculed 
today, yet if one uses the "educationally correct" synonym (or near-synonym, to be fair), 
"modeling," those same educators might nod in agreement.

Middle school abstraction does not necessarily have to be formal or explicitly axiomatic.
Going back to the sum of the angles in a triangle, as long as we establish that it is "more 
obvious" that opposite interior angles are equal than that the sum of the angles is 180°, the 
following demonstration (suitably motivated and scaffolded) should be a big formal step above 
experimenting with paper triangles.
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 Before this demonstration, students should be encouraged to experiment with paper triangles as 
in Balachef's research. We could possibly even show a benefit of formalism over 
experimentation by giving some students bogus triangles (e.g. quadrilaterals with one nearly 
invisible vertex whose angle is almost, but not quite, 180°) which, if if fooled them, might help 
them appreciate exact formalisms as opposed to approximate experimentation. Rosskopf also 
supports the use of manipulatives at this stage.

Abstraction has practical power. A good abstraction is concise yet yields, via deduction, a wealth 
of consequences. For example, linear equations are a wonderful abstraction. In particular, linear 
equations can be used to find scale factors between similar geometric figures or ratios between 
their side lengths. Why, then, does the Connected Math Stretching and Shrinking booklet (2006)  
whose focus is on similar figures, ignore linear equations? Not only does this approach sacrifice 
an opportunity to use a powerful mathematical tool to find solutions, and not only does this 
approach sacrifice an opportunity to show the interconnectedness of mathematics, but it also 
gives students a lot of practice with inefficient and hard-to-generalize ways of thinking.
Emerging formalists can also benefit from virtual worlds created by computer programs.

Seymour Papert in Mindstorms suggests that formalisms modeled by computer are much easier 
to learn because of the immediate, non-judgmental feedback (Papert 1980, p. 48) Hershkowitz 
also mentions a microworld in which formal rules are enforced by computer (Hershkowitz 1990 
p. 91). In the case of the triangle sum, a geometry program could help along the way. Technology 
may also be useful specifically in helping students make the transition to algebraic thinking 
(Yerushalmy & Shierenberg 1994 p. 393).

Conclusion 

I have chosen to focus on teaching middle school children because of the tremendous 
possibilities open at that unstable time of life. People climb the mountain of adolescence as 
children and come down as young adults, but the choices the adolescent makes on top, and the 
choices we help them to make, determine much of where the young adult will end up. I have 
chosen mathematics because it is a subject that I love and feel compelled to evangelize, and 
because it is one of the most important parts of any modern human being's education. I am also 
concerned by American students' poor performance in mathematics and feel that I know at least 
part of the reason for this performance: sloppy teaching that elevates, in the name of 
constructivism, the common students' inventions over the canon created by the effort over 
millennia of some of the finest minds ever to grace our planet. One constant throughout much of 
mathematical history has been a trend toward greater abstraction. A well-designed abstraction is 
simple yet wields tremendous power. But this kind of abstraction must be taught. Luckily it 
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appears that most middle school students are capable of learning it. I believe that it is negligent 
of us as mathematics educators not to do so.
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